
Modeling 2017’s french presidential election results using
machine learning on INSEE databases

-
Project Report

Gaël de Léséleuc de Kérouara
gael.de-leseleuc@student-cs.fr

Antonin Duval
antonin.duval@student-cs.fr

Louis Martin
louis.martin2@student-cs.fr

ABSTRACT
We aim at modelling 2017’s french presidential election by using
machine learning algorithms on different subsets of the INSEE
databases. Our goal is to answer the following questions : how
accurately can we predict the election results in a particular town,
based on the several statistics the INSEE have produced once we
have trained our model on a subset of french cities ? Which features
have the greater impact on the results or on the turnout ? What can
we learned about the candidates just by knowing the specificity and
election results on each city ? In a more general way, we want to
know in what extend the socio-economic factors are by themselves
sufficient to predict the result of an election.

1 INTRODUCTION
Context. The 2017 french presidential election took place in a

very complicated context. In June 2016 happened one of the most
unexpected situation in European politics, 51.9 % of the British
people decided that leaving the EU would be a beneficial option
for their country. Nobody would have thought this could happen
but 5 months later another news shook our world. Despite every
polls being against him, Donald John Trump was elected President
of the US on November 8. Moreover, France itself is facing its
share of the challenges : Europe is enduring a major migratory
crisis, the unemployment rate is still high, as is the public debt,
the state of emergency that was declared following the November
2015 Paris attacks is still ongoing, ecological issues are still to be
discussed...Considering the problem’s scope, french decided that
a reshuffle of the political class was necessary, and what we saw
was exactly as imagined. The main french favoured candidates
disappeared from the lists, for the first time the sitting president
Francois Hollande decided not to run as candidate, Nicolas Sarkozy,
Manuel Valls, Alain Juppé, Arnaud Montebourg stepped down in
favor of newcomers such as Francois Fillon, Marine Le Pen and
Emmanuel Macron.

After a unusual campaign, first round election leads to the victory
of Macron and Le Pen. The distribution results for the 11 candidates
are shown in figure 1.

As you can see on this figure, 6 candidates : Macron, Le Pen, Fil-
lon, Mélenchon, Hamon and Dupont-Aignan achieved to get more
than 1.5% of the results. The 5 others : Lassalle, Poutou, Arthaud,
Asselineau and Cheminade did not reach 1.5% of the vote.

Problem. The problem we are trying to solve despite the very
particular context of this election is to predict the candidates’ results
using only socio-economical data. To achieve this goal, we have
formulated the following questions that our work will try to answer:

Figure 1: Results of first round - 2017 french presidential
election

• How can we design a machine learning algorithm that is
able to output a discrete probability distribution ?

• What is the best R2 accuracy we can get on the first round
and second round of the election ?

• What can we learn from our data : Which features are impor-
tant for each candidates ? How are the candidates related to
each other ? Can we compute a similarity measure between
them ?

Tools. Our work will rely on the following data sources.

• The first one comes from the DataGouv website [3] it pro-
vides us the election results for each town.

• The second dataset contains all the statistical data on each
french cities. All the data were queried on a specific INSEE
website[4].

This second database can be decomposed in different sub-categories
:

• Demography : it contains information about how many peo-
ple are in each city, how the population fans out into the
different age categories, how many people live in a house-
hold...

• Education : it contains information about what the level of
education is in the city, what is the share of people who have
a bachelor degree, how many don’t have any diploma...

• Enterprise : it contains information about how many enter-
prises have been created, how the enterprises are distributed
into the different industrial or tertiary sectors...

• Equipment : it contains information about all the different
businesses in the city, for example the number of bakeries
or doctors...

Gaël de Léséleuc de Kérouara, Antonin Duval, and Louis Martin

• Real Estate : it contains information about whether people
own or rent their home and if it is a principal residence or
not...

• Work : it contains information about the employment rate
in a city and what kind of work people mostly practice in
the town.

For this work we have retrieve more than 65 features for each of
the 34 000 towns at our disposal.

2 DEFINITION
2.1 Dataset notation
Let us consider all the cities in France (roughly 34 000). Each city
will be written as ci . Those cities are characterized by a set of m
numerical features. For a city c , we define the city’s features as
θ1(c), θ2(c), ..., θm (c).

For the first round of the election, the result of candidate candi
in city c is denoted as r1r stcandi

(c) where i is between 1 and 11 (there
was 11 candidates in the first round). Candidate’s result are con-
ventionally described by a percentage, so r1r stcandi

(c) ∈ [0, 1] and∑
cand r

1r st
cand (c) = 1.

For the second round, the result of a candidate is denoted as
r2ndcandi

(c)with now i = 1 (Le Pen) or 2 (Macron). Let’s also introduce
a second notation : letw(c) be the winner of second round in city c.

2.2 Problem formulation
We will train our different algorithms on a subset of the cities
(typically 50%) and try to make a prediction on the rest of the cities.
For that we will try to do two separate tasks:

• Classification
• Discrete probability distribution regression

Classification. Considering that a majority of candidates did
not win in any cities in the first round, we will only use this classi-
fication method on the second round.
Considering a city c , we want to predicts the winner w(c). To do
so, we will predict the probability that "Le Pen" win knowing θ1(c),
θ2(c), ..., θm (c), then we will use the cross-entropy loss Ldescribed
as such :

L(p,winner) =

{
loд(p) ifwinner = LE PEN
loд(1 − p), otherwise

(1)

And in order to evaluate the model, we will simply compute the
accuracy on the test set.

Discrete probability distribution regression. Thismethod can
be implemented for both first and second round. For each city c ,
we compute the resulting distributions as :

• r1r stcand1
(c), .., r1r stcand11

(c) for the first round
• r2ndcand1

(c), r2ndcand2
(c) for the second round.

To train the model, we will used as a loss function the cross-
entropy between true result distribution and predicted result dis-
tribution. Let pred be the predicted result distribution ans true the
true result distribution. With this notation, in first turn, the loss is :

L(pred, true) =
11∑
i=1

truecandi ∗ loд(predcandi) (2)

For our algorithms, we had to program it ourselves since machine
learning frameworks such as scikit-learn only computes the "hard"
cross-entropy loss (meaning it does not accept probability distribu-
tion as a label but only one-hot vector).

To evaluate the model, we have used coefficient of determination.
For instance, to evaluate model predictions for second turn, we will
simply compute R2LE PEN. For the first turn, the situation is more
delicate because we have a prediction with multiple outputs. So to
end up with a single numeric metrics, we have decided to simply
take the mean of each candidate’s coefficient of determination :

R2 =
1
11

11∑
i=1

R2candi (3)

2.3 Further discussion on loss functions and
evaluation metrics

Note that in our two evaluation metrics : accuracy and mean of co-
efficients of determination do not take into account the population
of each city. This is reflected in both loss functions : the popula-
tion feature do not appear in none of these two losses. As we shall
see later, this choice is undoubtedly not without consequences. To
push things a little bit further, let explicit and compare two type of
predictions close but still different :

(1) taking randomly a city from all the cities, predict the result
of a candidate

(2) taking randomly a french citizen and only knowing in which
city he lives, predict the probability that he votes for a par-
ticular candidate.

The first type of prediction is what we are doing with losses 1
and 2. As for the second type of prediction which is very similar
to the first one, we have to take into account a prior probability
distribution corresponding to the probability for a random citizen
to be picked from a particular town. This prior distribution forces
the algorithm to take better notice of the population of each city.
Another solution would have been to put a weight on each cities
depending on its population into the loss.

3 RELATEDWORKS
Trying to predict the outcome of an election is a decades-old tra-
dition. However, these predictions are the results of opinion polls
made on a sample of individuals as seen on figure 1. What we want
to try instead is focusing only on socio-economic factors to predict
the outcome.

Different people have already tried to implement machine learn-
ing on this subject. In 2017, a student tried to predict the result
by counties in the 2016 American election using machine learning
techniques[5]. However, his analysis was only based on demo-
graphic data and was focusing on the last turn of the election.

Michel Blum, a Data Scientist at the CNR, published an article
on how he used machine learning with socio-economic data to
find outlier cities[1]. Outlier cities are cities where results are a

Modeling 2017’s french presidential election results using machine learning on INSEE databases
-
Project Report

real no-match with the prediction, meaning those conurbations
don’t follow common trend and are interesting to be looked at. He
focused on the result of Marine Le Pen in the second round of the
election. His work is close from what we want to achieve, since he
used the same source of datasets. However, our focus is on the first
round of the election, and we want to predict the total distribution
of vote in every town for every candidate.

One interesting approach was made by researchers at the Stan-
ford Universtiy[2] where they made prediction at the individual
level. Using personal public information (gender, age...), they tried
to predict the probability that an individual person would vote for
Clinton in the 2016 U.S. elections. They managed to achieve pretty
good accuracy. This might be due to the fact that they relied on
covariates such as "is a member of the Republicain party", etc. Since
we can’t access to these type of personal information, we decided
to work at a superior level, using aggregated data at the city level.

4 METHODOLOGY
4.1 Data Cleaning
We first imported a lot of data from the INSEE database and we
worked on removing all the "Nan" values. We studied how much
removing them would influence our database. For example, when
checking for missing value in our database we reached the conclu-
sion that either this town belonged to Mayotte where the social
situation might sometimes be a little difficult to evaluate or this
town was destroyed during the Second World War. In both case,
we took the liberty of removing these cities from the database. Fur-
thermore, we also had the situation where the problematic city was
neither in Mayotte nor destroyed but was only a small town (< 10
inhabitants) in this case we verified that the number of occurrences
was marginal compared to the size of the database and proceeded
to remove these cities as well.

Figure 2: We can see in this figure that a really low propor-
tion of our data is missing and that removing them is not
important. In this case, it sums up to 65 cities

The second strategy we implemented is regrouping the data in
category, in particular for population.

population category

0 < p < 2000 Village
2000 < p < 5000 Borough
5000 < p < 20000 Small Town
20000 < p < 50000 Middle Town
50000 < p < 200000 Big Town

200000 < p Metropolis
Table 1: Categorize cities based on their population

Besides, in order to merge all the data in a single dataframe, we
produce for each town a INSEE code which results from the merge
of the communal and departmental code.
After cleaning all our data we tried several algorithms to make our
predictions.

4.2 Prediction techniques
In the first approach, we tried to predict the winner in each town in
the second round of the election as a binary vector. This is a classi-
fication task where our target vector is composed of 0 and 1, where
1 indicates that Marine Le Pen had more voters than Emmanuel
Macron in this town. What we wanted to see is if it’s possible for
an algorithm to learn how the socio-economical variables play a
role in the final turn of the election. What we expected to see is
that some features like the size of the population, or the ratio of
diploma would have a great impact on the result. Indeed, many
analysis after the presidential campaign showed that Mr Macron
and Mrs Le Pen have a very different basis of electors. The one big
downside of this approach is that, by converting the number of
voters in 0 and 1, we lose a lot of granularity. For example, a town
that is very undecided between Macron and Le Pen, which had a
final score of 51% vs 49% will pose problem for the algorithm, since
this indecision will not be transcripted in the binary vector.

We decided for this task to use different type of classifier :

• A Logistic regression
• A Random Forrest
• A Gradient Boosting
• A SVM

To compare the result of those different algorithms, we shall use
the global accuracy.

4.3 Candidate result prediction
Our second approach was to predict the exact distribution of votes
in an particular city. In order to achieve that goal. we had to figure
out our own working pipeline. Indeed, this problem is neither a
classification problem, nor a lambda regression problem. Let us
analyze why we cannot apply directly this method to our problems.

(1) Classical classification algorithms (as implemented in
scikit for instance) learned by comparing predicted output to
one-hot distribution by using cross-entropy loss. We could
have used such methods with soft-label : a vector of prob-
ability instead of one-hot vector. Unfortunately, machine
learning frameworks does not accept such label for classifi-
cation

(2) Classical regression algorithms can predict a numerical
vectors. However, it can’t ensure that we end up with a
normalized vector (which is mandatory for our cases).

So to overcome those limitations, we tried two approaches.

Neural networks. In a first approach, we tried to directly predict
a discrete probability distribution by using a neural network with
a number of output neurons equal to number of candidates and
then normalize the output results before applying a loss functions
(soft-cross-entropy loss described in equation 2). This pipeline is
described in figure 3.

Gaël de Léséleuc de Kérouara, Antonin Duval, and Louis Martin

• Pro : directly produces a discrete probability distribution as
an output

• Con : with this pipeline, it may be difficult for the neural
network to be able to learn anything from small candidates
(which always have low results).

We still have to discuss the way we apply normalization. Usually,
in classification algorithms, we apply a softmax to the output : it
differentiable and produce a probability distribution. In that case,
each output neuron is normalized as :

predi =
eoutputi∑11
i=j e

outputj
(4)

However, it exponentially amplified the neuron output which had
the largest value. This is good for classification, but the question is
: is it good for our purpose ? Because in our case, different index
of the true distribution result may have similar values. So will
our neural network be able to produce these values when using
a softmax layer ? To study this effect, we will compare softmax
normalization with simple normalization :

predi =
|outputi |∑11
i=j |outputj |

(5)

Figure 3: Neural network to predict a discrete probability dis-
tribution

One versus rest. In a second approach, we try to use multiples
model (one for each candidate). Each model predicts for each city
the score of only one candidate. Then we concatenated the results
of the 11 models and normalized it to have a true distribution result.

• Pro : we can use many existing regression algorithms and
this could provide good predictions even for "small" candi-
dates

• Con : We don’t produce a probability distribution : it still
has to be normalized. So if the output vector’s norm is far
from one, a lot of our prediction’s quality will be lost in the
normalization step. The pipeline for this method is described
in figure 4.

4.4 Analysis of feature’s importance for each
candidates

We also tried to used simpler but more explainable model such
as logistic regression to predict the result of the candidates. The
idea is that with such model, we are able to better understand
why a particular decision is output. So our idea was that once our
logistic regression was trained to predict the score of a particular

Figure 4: One versus rest approach to predict a discrete prob-
ability distribution

candidate, we can gather all the weights, with each weight being
the importance of a feature with respect to a specific candidate. We
then easily sorted all of them by their absolute value and kept the
largest ones.

4.5 Candidates embedding
Our final idea was to study if, when using machine learning to
model election results, the algorithm learns anything about the
candidates themselves. For instance, is it possible to compute a
similarity measure between the candidates ?

To do so, we looked for a way to embed the 11 first round’s can-
didates into vectors in a way that the distance between candidates
reflect their political affinities. We used the following method to
create such an embedding :

(1) for each candi , train a logistic regressionmodeli to predict
r1r stcandi

(c) (for each city c)
(2) retrieve wi = (wi

1, ..,w
i
j , ..,w

i
m) the weights vector of each

model, so that wi
j is the importance that modeli gives to

features θ j .
(3) associate candi to vectorwi so thatw =

−−−−→
candi

Once we have embedded the candidates in a m (number of
initial features) dimension vector, we will be able to visualize the
candidate embeddings in a 2D-space and check if the distance
between candidate embeddings reflects our common representation
of political space. For instance, we would like to check if we have
−−−−→
Fillon closer to −−−−−−→Macron than to −−−−−→Hamon) because in french political
left-right axes, Fillon is placed more on the right side of the political
scale, Hamon more on the left and Macron quite in the middle. This
is something we expect to get as a result of our logistic regression
models training because it means that the models have successfully
learned the importance of each features for each candidate.

5 EVALUATION
As our motivations were multiple, we aimed at firstly targeting
the simpler objectives. So, we started by predicting the election
winner, then obtain the election distribution results. Finally, we

Modeling 2017’s french presidential election results using machine learning on INSEE databases
-
Project Report

tried to embed the candidates into vector on which we can compute
similarity distance.

5.1 Winner prediction
We tried predicting the winner of the election in the second round
for each town. Using different classification algorithms, we used
a gridsearch on multiple folds to tune our models. We selected
a subset of our dataset to only have cities with more than 500
inhabitants. By doing so, we remove outliers that are very often
small villages : their behaviour is very hard to predict, so we focused
on larger cities. After selecting the best hyperparameters for each
models, this is all the ROC curves we got.

Figure 5: ROC curve for the task of predicting the winner in
the second round

Overall, it seems all 4 algorithms we tried give similar result
with gradient boosting being the one with the most accuracy.

Model Accuracy
Logistic Regression 0.835
Random Forrest 0.801

Gradient Boosting Trees 0.870
SVM 0.840

5.2 Distribution regression
Second round. To predict second round results, we first imple-

mented a very simple algorithm : a logistic regression with soft-
cross-entropy loss. To visualize what our algorithm has learned,
we plot the true score of Marine Le PEN vs the score our logistic
regression. To make the plot easier to interpret, we used two tricks
:

(1) colorize and choose the size of each city dot depending on
their population (see table 1).

(2) first plot the small city and after plot above the biggest city
By using this strategy, we obtain the left plot of figure 6 that led to
the following analysis :

(1) this simple model successfully learns something as (R2 =
0.372)

(2) the smaller cities are more spread. This was expected be-
cause, some city only have really few inhabitants. As a con-
sequence the variance on the INSEE statistics corresponding
to these cities is really high. It is really hard to produce any
predictions on them.

(3) the model over-estimates Le Pen score for big cities. This
phenomena is probably due to two things : bigger cities have
voted more Macron than smallest cities and, as we mention
in section 2.3, we do not take into account the population in
the loss function.

If we remove, the small city (let say less than 1000 inhabitants) and
retrain our model, we obtain the right plot of figure 6. We directly
see a great improvement of our model (R2 = 0.53) and now the
prediction on metropolis are way better.

Figure 6: Use of logistic regression to predict LE PEN score.
Left : on all the cities
Right : by keeping only cities which have at least 1000 inhab-
itants

First round. We then try to predict the first round result by
using neural networks with soft-cross entropy loss and by imple-
menting the pipeline described in figure 3. We compare three
models :

(1) 2Layers_no_softmax : a 2 layers network with 200 neurons
in the hidden layer with custom normalization at the end
(see equation 5)

(2) 2Layers_w_softmax : a 2 layers network with 200 neurons in
the hidden layer with softmax at the end)

(3) 1Layer_w_softmax : a single layer network with softmax at
the end - so simply generalization of logistic regression to
multiple dimensions.

We train this model in parallel, on the same batch (size = 36) and
with the same loss function on 50% of the citys which contains at
least 500 inhabitants. The models were trained over 100 epochs.
To compare these models, we used our custom metrics - R2 mean
defined in equation 3. All the results are compiled in table 2

By analysing this table, we can formulate several observations:
(1) surprisingly, it is better to use sotfmax normalization. It

seems that more train epochs are needed when using our
custom normalization function

Gaël de Léséleuc de Kérouara, Antonin Duval, and Louis Martin

MODEL 2Layers
no_softmax

2Layers
w_softmax

1Layer
w_softmax

R2 score train test train test train test
mean 0.02 -0.01 0.39 0.16 0.19 0.19

HAMON 0.12 0.08 0.48 0.18 0.2 0.21
DUPONT-
AIGNAN 0.13 0.08 0.39 0.18 0.24 0.23

LASSALLE 0.13 0.09 0.63 0.22 0.21 0.25
ARTHAUD -0.03 -0.06 0.2 0.07 0.15 0.15
POUTOU -0.01 -0.04 0.22 0.03 0.1 0.09

ASSELINEAU -0.02 -0.05 0.1 -0.04 0.03 0.02
MACRON 0.24 0.2 0.63 0.44 0.43 0.43

MÉLENCHON -0.24 -0.27 0.57 0.19 0.22 0.22
FILLON -0.07 -0.08 0.66 0.39 0.33 0.33

CHEMINADE -0.38 -0.36 -0.32 -0.38 -0.29 -0.29
LE PEN 0.32 0.28 0.76 0.51 0.5 0.5

Table 2: Comparison of 3 neural networks model to predict
first turn result. For each candidates, the R2 is calculate on
test set

(2) by using 2 Layers network, we observe a clear over-fitting
because we have a big gap between our metrics values on
train set (0.39) and on test set (0.16)

(3) as we expected, the model does not learn much from small
candidates (it under-fits).

When we tried to increase the complexity of our model (when
going from 1 layer to 2 layer) we quickly had a ovefitting effect
from the "big" candidates but still observe a under-fitting effect
for the "small" candidates, it seems very unlikely to obtain better
results with this pipeline.

Now, let’s evaluate the prediction results when using the one-
versus-rest pipeline as described in figure 4. We first trained 11
logistic regressions in parallel and concatenate their output to form
the discrete probability/results distribution. Then we plot the distri-
bution of these vector norm before normalization. The idea is that
if we are far from one, the normalization will strongly transform
the vector and we will loss a lot of precision. For instance this can
occur if a particular model strongly over-estimate the score of the
candidate it is supposed to predict.

As you can see in figure 7, the norm of the output vectors of
one-vs-rest approach are narrow to one. After normalization, we
obtain comparable result than when using the first pipeline.

Since this approach seemed very promising, we decided to directly
trymore powerful models. Indeed, themain strength of this pipeline
is that we can easily use already implemented algorithms. So we
used a Gradient Boosting Regressor, which is an ensemble model
proposed by the the scikit library. We trained 11 models in parallel,
one for each candidate, using different sets of parameters. As before,
we wanted to maximise the mean R2 score. The result were bet-
ter than the neural network as we can see in figure 9. Parameter
D stands for max depth of a tree and T for the total number of
estimators. Our Gradient models seemed to overfit quite a lot. How-

Figure 7: Distribution plot of output vector’s norm before
normalization in one-versus-rest approach

Model 1Layer
w_softmax

Gradient Boosting
D=3 T=500

R2 score train test train test
HAMON 0.2 0.21 0.39 0.26
DUPONT-
AIGNAN 0.24 0.23 0.43 0.247

LASSALLE 0.21 0.25 0.51 0.18
ARTHAUD 0.15 0.15 0.38 0.18
POUTOU 0.03 0.02 0.31 0.10

ASSELINEAU 0.43 0.43 0.27 0.05
MACRON 0.43 0.43 0.591 0.477

MÉLENCHON 0.22 0.22 0.46 0.30
FILLON 0.33 0.33 0.57 0.44

CHEMINADE -0.29 -0.29 0.21 -0.02
LE PEN 0.5 0.5 0.65 0.561
Mean R2 0.19 0.19 0.43 0.253

Table 3: Comparison of the Gradient Boosting approach vs
neural network. For each candidates, the R2 is calculate on
test set

ever, we achieved a better R2 score on the majority of candidate
comparing to the neural network we trained before. After some
trials hypertuning the parameters, we were not able to reduce the
variance without reducing the global R2 score.

In figure 6, we show the regression plot we obtain with gradi-
ent boosting on each candidates (we plot only 10 candidates for
visualization purpose). These plot demonstrate that our model suc-
cessfully learns something for the 6 biggest candidates. However for
smaller candidates (who have obtained less 2% of national suffrage),
we observe a sort of vertical cloud dot in the regression plot. This
indicates that the only thing our algorithm learns is to predict for
each city the mean result that a particular candidate obtains at a
national level.

Modeling 2017’s french presidential election results using machine learning on INSEE databases
-
Project Report

Figure 8: Regression plot for each candidate prediction on test set. From left to right, first row then second row : Le Pen,Macron,
Fillon, Mélenchon, Hamon, Dupont-Aignan, Lassalle, Poutou, Chemineau, Asselineau

5.3 Features analysis
Obtaining meaningful information about candidates by looking at
features weight as explained in section 4.4 did not work as well as
expected. If we look at the 5 most important features for a particular
candidate, we observed great variation depending on the way we
train the model and on the number of initial features. However, in
second round, situation is easier, and by retrieving the weights of
our classification model, we obtained stable results (show in figure
9).

Figure 9: Histogram plot of the 5 largest feature weights in a
logistic regression trained to predict Marine Le Pen results
in second turn

Our conclusion is that even if we can make use of the model we
have trained to understand feature importance for each candidate,
we could have got similar results more easily by computing simple
correlation between the features and a candidate vote.

5.4 Candidates embedding
To embed into vectors as described in section 4.5, we first have to
reduce the number of features for two reasons.

The first is that, in the end, we want to compare distance between
different pairs of candidates embedding so if the dimension of

embedding space is too large, the distance between each vector will
likely be meaningless.

Second reason is that some of our initial features are very corre-
lated (for instance "population number" and "number of entreprise"
of the cities), this is a big issue for our embedding task because we
are training 11 models separately. Let’s take an example to illus-
trate this problem. Suppose that we have two candidates which are
equally sensitive to the size of the city and suppose that "pop" and
"nb-ent" (two features closely dependent of the size of the city) are
perfectly correlated. Maybe first model will arbitrary give a large
weight to "pop" features and a low weight to "nb-ent" whereas the
second model will give the opposite weight distribution to achieve
the same effect. This is not a problem when the focus is to predict
the candidate results but here it is an issue because those two candi-
dates will be separated instead of being bonded by the "size" feature
of the city. To continue with our example, we will then obtain these
two embedding vectors :

−−−−→
cand1 = (nb_ent = α,pop = β, ...)

−−−−→
cand2 = (nb_ent = β,pop = α, ...)

Then, if we simply consider the first two dimensions (corresponding
to our theorical hypothesis that this two features are perfectly
correlated), our two vector will not be aligned as we wish.

To address this two problems, we reduce embedding dimensions
and remove linear correlation by performing PCA on initial fea-
tures spaces. Starting from almost 50 features for each city, we use
a 20-components PCA which allows us to keep almost 90% of the
variance ratio. Then we follow our initial protocol described in sec-
tion 4.5 to obtain a 20-dimension vector for each of the 6 "biggest"
candidates. We did not keep the other candidates because as we saw
in figure 8, the algorithms did not achieve to learn anything for
these candidates due to the very low amount of vote they succeed
to get. As a final step, we re-scale each dimension and perform a
final PCA to project our six 20-D vectors in 2D space and be able to
visualize them. The 2D scatter plot of this six candidates embedding
is show on figure 10.

As a comparison, we print above the common representation of
the eleven candidates spread on the political space. As expected we
have Fillon closer to Macron than to Hamon, also Dupont-Aignan
closer to Le Pen than Macron, etc. In fact, our results perfectly

Gaël de Léséleuc de Kérouara, Antonin Duval, and Louis Martin

fit with the common representation of candidates in the french
political space.

Figure 10:
••• On the top : positioning of each of the eleven candi-
dates on the french political space according to AFP.
Here we have a representation going from extrem-left
wing (Arthaud) to extrem-right wing (Le Pen)

• On the bottom : 2D visualization of candidates embed-
ding (only for candidates which have at least 1.5% of
the suffrages

6 CONCLUSION
By only taking into account socio-economical data, we were able to
model and predict a lot of different things on 2017 french presiden-
tial elections. The first striking result is that this socio-economical
data were sufficient to model with high accuracy the winner in
each town for the second round : 0.87 of AUC.

After getting this result, we focused our effort into designing
original machine learning pipeline in order to model the resulting
vote distribution with high accuracy. We reached quite good results
for the six candidates which have obtained more than 1.5% of vote
on first round. Our evaluation metrics coefficent of regression,
goes from 0.22 for Dupont-Aignan to 0.5 for Le Pen. However, the
algorithms we used were not able to learn anything for the 5 others
candidates. Main probable reason is that those candidates had not
enough votes so that we could not learn correlation between the
number of votes and each features.

As a final work, we have design a way to embed the six biggest
candidates into vector such as this embedding space reflects the

french political landscape. When projecting this embedding space
in a 2 dimensional space, we observe than the vector representing
the candidates positioned themselves exactly as we excepted.

REFERENCES
[1] Michael Blum. 2018. Outlier detection using machine learning approaches:

application to French politics. https://towardsdatascience.com/machine-
learning-approaches-detect-outlier-values-that-do-not-follow-a-common-
trend-detecting-cc0252f637bd

[2] Rosenman Evan and Viswanathan Vitin. 2018. Using Poisson Binomial GLMs to
Reveal Voter Preferences. arXiv 1802.01053 (2018).

[3] Data Gouv. 2019. Les données des élections. https://www.data.gouv.fr/fr/posts/les-
donnees-des-elections/

[4] INSEE. [n. d.]. Les statistiques locales. https://statistiques-locales.insee.fr
[5] Ryan Peach. 2017. Describing the 2016 Election with Machine Learn-

ing. http://www.ryan-peach.com/school-projects/2017/5/22/describing-the-
2016-election-with-machine-learning

https://towardsdatascience.com/machine-learning-approaches-detect-outlier-values-that-do-not-follow-a-common-trend-detecting-cc0252f637bd
https://towardsdatascience.com/machine-learning-approaches-detect-outlier-values-that-do-not-follow-a-common-trend-detecting-cc0252f637bd
https://towardsdatascience.com/machine-learning-approaches-detect-outlier-values-that-do-not-follow-a-common-trend-detecting-cc0252f637bd
https://www.data.gouv.fr/fr/posts/les-donnees-des-elections/
https://www.data.gouv.fr/fr/posts/les-donnees-des-elections/
https://statistiques-locales.insee.fr
http://www.ryan-peach.com/school-projects/2017/5/22/describing-the-2016-election-with-machine-learning
http://www.ryan-peach.com/school-projects/2017/5/22/describing-the-2016-election-with-machine-learning

	1 Introduction
	2 Definition
	2.1 Dataset notation
	2.2 Problem formulation
	2.3 Further discussion on loss functions and evaluation metrics

	3 Related works
	4 Methodology
	4.1 Data Cleaning
	4.2 Prediction techniques
	4.3 Candidate result prediction
	4.4 Analysis of feature's importance for each candidates
	4.5 Candidates embedding

	5 Evaluation
	5.1 Winner prediction
	5.2 Distribution regression
	5.3 Features analysis
	5.4 Candidates embedding

	6 Conclusion
	References

