
Deep Learning for Medical Imaging - Final Project Report
Using CycleGANs to translate MRI to CT scans of the brain

Antonin Duval
antonin.duval@student-cs.fr

Leo Fillioux
leo.fillioux@student-cs.fr

Sebastien Saubert
sebastien.saubert@student-cs.fr

Abstract

Given either a CT scan or a type T2 MRI image of the
brain, we want to convert from one to the other. For that, we
will show how a CycleGAN can be applied, trained on un-
paired images of CT scans and T2 MRI. After a registration
step and a bit of preprocessing, the data is fed into a Cy-
cleGAN model, with its classical losses along with an addi-
tional cycle perceptual loss. To evaluate the overall results,
other that visually, we used the structure similarity metric
(SSIM) to evaluate the quality and how much information
was conserved by our architecture. The important imple-
mentation and hyperparameter tuning steps are described.

Introduction
The original GAN (generative adverserial network) pa-

per [7] was published in 2014 by Ian Goodfellow and
Yoshua Bengio. A GAN is able to produce realistic images
given some input noise. It works by training two networks,
adverserial to one another : a generator, which produces im-
ages, of a particular distribution, and a discriminator, which
tries to predict if the input image is a real one, or one which
came out of the generator. The generator’s goal is to trick
the discriminator, and the discriminator’s goal is to be able
to differentiate real images from generated images, hence
the adjective ”adverserial”.

CycleGANs were introduced by a paper [6] published in
2017 by Jun-Yan Zhu. The idea is to have two relatively
close distributions of images (in our case CT scans and T2
MRIs of the brain), and to be able to go from one to the
other. The dataset is composed of unpaired images, which
means that for a given CT scan of the brain, we do not have
an MRI of the same patient. Here, there are two generators
and two discriminators, one for each transformation. The
general idea behind the training is that a generator X → Y
must be able to generate realistic ŷ images from x, but at
the same time, we want for Y → X applied to ŷ to be very

similar to x.
It can be very interesting to be able to deduce one type of

medical imaging from another for multiple reasons. These
images can be quite expensive to acquire and sometimes
require injection or radiation of the patient, which is better
when avoided.

CT scans are a quick and non invasive type of medical
imaging, but which do not give a very high level of detail.
Even though this is sometimes necessary, we often need to
have a higher level of detail. In MRI, the amount of in-
formation which can be retrieved is much greater, but the
process is much more time consuming, expensive and can
even be dangerous (with the very high magnetic fields in-
volved). Finding a way to deduce the information present
in an MRI from a CT scan can therefore be very intersting.

We chose two types of images that have relatively close
distributions so that the model will be able to deduce one
image from the other. We will therefore train a CycleGAN
on datasets of unpaired images of CT scans and MRIs to go
from one distribution to the other.

1. Related work

In [5], two new losses are proposed, to apply Cycle-
GANs to medical images. These two losses are added to
the already existing CycleGAN losses. The idea is that cy-
cle consistency loss alone does not allow the network to re-
produce the same details and image quality as in the original
images.

The first proposed loss is the cycle perceptual loss. A
pretrained feature extractor is used on the original image
and the cycle reconstructed image. The loss is a weighted
sum, over the features extracted from different layers, of the
MAE between an image, and the cycle reconstructed one.
The loss expression is

LcPercep =

L∑
i=0

λi(‖Fi(x)− Fi(ˆ̂x)‖+ ‖Fi(y)− Fi(ˆ̂y)‖)

1

Where Fi are the features extracted from the ith layer of the
feature extractor, and λi is the weight given to the ith layer.

The second proposed loss is a style-transfer loss, which
ensures that the cycle reconstructed image should have the
same level of details and style as the original image. It is
based on feature map correlations between the features of
a certain layer for the original and the cycle reconstructed
image.

2. Methodology
2.1. Dataset

Because CycleGANs do not require the images it uses to
be paired, we were able to chose two separate sources for
our CT and MRI images. The dataset used for CT scans is
CQ500 [2] and the one used for T2 MRI is IXI [3]. These
datasets contain 3D volumes of the brain but, for computa-
tional power constraint, we will work only on one specific
slice of the brain for the CT and T2 modalities. Figure 1
shows an example of extracted slices for both modalities.

Figure 1. Example of T2 MRI (left), Example of CT scan (right)

As we can see in the sample of a CT scan, colors seems
off and we don’t have any details of the brain, in comparison
of the T2 MRI. This is because the scans are in dicom for-
mat, which use a pixel representation with extreme values.
One easy way to solve this issue is to clip values that are
above 255 and below 0, so that when we plot the image, the
normalization can handle smaller variation in pixel. Figure
2 shows a CT scan after the pixel correction. We can now
see smaller details inside the brain.

In terms of preprocessing, two majors steps had to be
taken. The first one was to do registration on the images
with the ANTS library [1]. Training a CycleGAN with
unpaired modality is quite difficult by itself, especially if
the brains are of different shapes. This is why registration
is an important preprocessing step to make the training of
the model easier. To proceed on registration, we chose one
reference image per modality, these two references images
were chosen based on: their shape similarity between each
other, plus how well it is centered and oriented. The ob-
jective was to take the brain that looked the best as a refer-
ence. We chose to do registration using both linear and de-

Figure 2. Example of an adjusted CT scan

formable registration, meaning that each brain will be both
placed at the same position as it reference brain, but it will
also be reshaped to have a similar shape. Once this had been
done, all images were located at the same position and had
roughly the same shape but still with a different content.

The second part, which only applied to CT images, was
to remove a sort of artefact which was present in all im-
ages (see figure 1 right image), and which probably corre-
sponds to a metal plate preventing the x-ray propagation in
the room. Since the CT modality has been registered, the
zone of interest, i.e. the brain, is localized at a same loca-
tion for all images. Then, defining a mask was quite easy by
taking only a reference image to build it and apply it on all
CT images. For building the mask, instead of doing it man-
ually, we apply the following steps on our reference image:

1. apply a binary thresholding on a grayscale image: we
keep the bone and the artefact but no more the content
of the brain

2. repeat an erosion up until the artefact is removed
3. repeat a dilatation so that the ”bone” is reconstructed

back with a certain margin
4. fill the content of the bone with binary fill holes from

scipy library.

Figure 3 shows the resulting mask used then to remove
the artefact and figure 4 show the complete preprocessing
of CT scans from registration to artefact removal.

Figure 3. Mask generated to remove artefacts on CT images

The last adjustment performed is to align the resolution
of our two modalities to 256× 256 pixels.

2

Figure 4. Original CT scan(left), after applying linear and de-
formable registration (center), and after removing the artefacts
(right).

2.2. Model implementation

CycleGANs consist of two generators, each of them in
charge of generating images from one modality to the other.
To evaluate the quality of the generators, two adversarial
networks, the discriminators compare the results from gen-
erators to modality’s real images.

For the generator, we used U-NET neural network ar-
chitecture. Indeed, as we need to generate an image from
one modality to the other, keeping the same resolution
(256 × 256 pixels), it was straightforward to select U-NET
as a basis architecture. To hopefully speed the training
and, therefore convergence, we also apply transfer learn-
ing to our generators by using pretrained U-NET networks
on imagenet. For that, we used models provided by the
segmentation-model python library [4] that provides pre-
trained U-NET models with different backbones. In our
case, we used the resnet-18 backbone.

Regarding the two required discriminators, we apply the
same strategy: using also a pretrained resnet-18 backbone
pretrained on imagenet for these classifiers.

2.3. Losses

The loss used for the discriminators is the binary cross
entropy loss, which expresses how well the discriminator is
able to distinguish real from generated images. For exam-
ple, we would give to the T2 discriminator a batch of real
T2 images and a batch of fake T2 images and see how well
it is able to separate them. We would then do the same for
CT images.

LDT2
=

1

|T2|
∑
T2

−log(D(T2))

+
1

|CT |
∑
CT

−log(1−D(G(CT)))

LDCT
=

1

|CT |
∑
CT

−log(D(CT))

+
1

|T2|
∑
T2

−log(1−D(G(T2)))

Regarding generators, there are two types of losses. The
first one is related to the feedback provided by the discrimi-

nator. To get a relevant feedback from discriminators, we
must ensure that the discriminator loss as previously de-
scribed is not too big so that the feedback is valuable but
also not too close to zero to avoid vanishing gradient. The
loss used by the generators from the discriminators is the
following: LDX

GX
= 1
|X|
∑
X −log(D(G(X))). We can see

that this is the opposite of the second term of discrimina-
tors losses. Indeed, as the generator objective is to trick
the discriminator, the generator and discriminator losses are
somehow opposite.

The second type of loss for generators is the cycle
consistency loss, which gives a measure of how well the
cycle reconstructed image resembles the original image
(GX(GY (i)) = i). For this, we first tried to use a simple
MSE loss on the images but we found that the results were
much better when using the SSIM loss which gives an idea
of how well two images compare in terms of luminance,
contrast and structure (as a product of all three scores) rather
than comparing values pixelwise like the MSE loss.

LSSIM (x, x̂) = lum(x, x̂)+contrast(x, x̂)+struct(x, x̂)

Unfortunately, with the two losses described previously,
the results were not as good as expected. Especially, we
were facing a ’mode collapse’ where all generated images
were the same. To mitigate this, we added a third type
of loss to the generators: the perpetual loss [5]. For this,
we used a pretrained features extractor (VGG19) and se-
lected the activations from three layers. The loss consists
in comparing these activations for an image and its cycle-
reconstructed version.

LcPercep(x, x̂) =

L∑
i=0

λi(‖Fi(x)− Fi(ˆ̂x)‖

Where Fi are the features extracted from the ith layer of the
feature extractor, and λi is the weight given to the ith layer.

Therefore, the loss for a generator consisted in summing
the loss from discriminator, the cycle consistency loss for
its modality with the perpetual loss for the both modalities
(with some weights which had to be tuned).
Lgenerator x(x, y) = LSSIM (x, x̂) + LcPercep(x, x̂)+

LcPercep(y, ŷ) + LDy

Lgenerator y(x, y) = LSSIM (y, ŷ) + LcPercep(y, ŷ)+
LcPercep(x, x̂) + LDx

2.4. Hyperparameter tuning

This project allowed us to see that training a CycleGAN
was not easy, first because of the implementation with mul-
tiple losses to take into account, but also because the hyper-
parameters had to be very finely tuned. The hyperparame-
ters which had the biggest impact on the final result were
probably :

3

1. Learning ratio k : how many iterations of training the
generator are done, before doing one iteration of train-
ing the discriminator ? This is probably the most im-
portant hyperparameter. We want the generator to fool
the discriminator, but not too quickly, otherwise there
is no feedback to be taken from the discriminator. If
the discriminator gets too good too quickly, then the
generator is never able to converge. We have to find
the right balance so that the discriminator gets fooled
at some point (so has an accuracy of 0.5), but not too
quickly. Visually, we can see that when the discrimi-
nator gets too good, the generator produces either only
black images, or very noisy complex structures that do
not look at all like the target distribution. During our
experiment, we obtain the best result by setting a 4 to
1 ratio of training between the generator and the dis-
criminator.

2. Learning rates : there are two different learning rates,
for the generator and the discriminator. How fast we
want the generator and the discriminator to learn is the
same question we asked in the learning ration k. Here
the learning rate also plays the usual role where we
don’t want the model to diverge. During our experi-
ment, we obtain the best result by setting a 1e−4 learn-
ing rate to the generator and 1e−3 learning rate for the
discriminator.

3. Loss weights : which weights do we give to the cy-
cle perpetual and cycle consistency loss ? The aim of
the cycle perpetual loss was to avoid mode collapse,
which happened when we only used the cycle consis-
tency loss. However, putting too big of a weight on the
cycle perpetual loss gave very bad results, and putting
a weight that was too small did not prevent mode col-
lapse.

3. Evaluation

3.1. Evaluation of a CycleGAN

It is challenging to find a good metric to judge how good
a GAN is versus another one. One can think of validation
by visual inspection, which is sufficient to tell if a model
seems to work well. However, in the case of a generative
algorithm in the medical domain, we are not qualified to
judge if our generated image has kept the important features
a doctor would need. Moreover, since we are not working
with paired-images, we do not have the real CT image cor-
responding to the T2 MRI, or the real T2 image for a CT
image, so we are just guessing the image is corresponding.
A good way to evaluate our model and to compare it with
existing one would be to use some quantitative metrics. An
efficient GAN evaluation measure should:

1. favor models that generate high fidelity samples,
meaning it is hard to distinguish fake sample from real
one

2. favor models that generate diverse samples, and reject
models that are in mode collapse or mode drop

3. have well-defined bounds
4. be sensitive to image distortions and transformations.

GANs are often applied to image datasets where cer-
tain transformations to the input do not change seman-
tic meanings. Thus, an ideal measure should be invari-
ant to such transformations.

5. agree with human perceptual judgments and human
rankings of models have low sample and computa-
tional complexity.

In our case, we decided to use the Fréchet Inception dis-
tance as well as the SSIM score.

3.2. Frechet Inception Distance

The Frechet Inception Distance, or FID for short, is a
metric for evaluating the quality of generated images and
specifically developed to evaluate the performance of gen-
erative adversarial networks.

Inception score measures the quality of a generated im-
age by computing the KL divergence between the (logit)
response produced by this image and the marginal distribu-
tion, i.e., the average response of all the generated images,
using an Inception network trained on ImageNet. In other
words, Inception score does not compare samples with a tar-
get distribution, and is limited to quantifying the diversity
of generated samples. Frechet Inception distance compares
Inception activations (responses of the penultimate layer of
the Inception network) between real and generated images.

The Fréchet Inception Distance is calculated using this
equation :

FID = ‖µr − µg‖2 + Tr
(

Σr + Σg − 2 (ΣrΣg)
1/2
)

where Xr ∼ N (µr,Σr) and Xg ∼ N (µg,Σg) are the
2048-dimensional activations of the Inception-v3 pool3
layer for real and generated samples respectively.
To retrieve the logits of our real and generated images, we
simply remove the last layer of the Inception network, and
make a forward pass of the images. We can then com-
pute the FID score for the set of generated images. How-
ever, even though FID indicates better-quality images; con-
versely, a higher score indicates a lower-quality image, it
may not be optimal for medical imaging. Indeed, FID uses
the Inception network, that was trained on ImageNet, which
is composed of pictures very different from the kind of im-
ages we have in our datasets of CT scan and MRI.

3.3. Structural Similarity

The structural similarity (SSIM) is a very common
metric to mesure the similarity between two image.

4

SSIM(x, y) =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ

2
y+c1)(σ2

x+σ
2
y+c2)

with: ·µx the average of x
·µy the average of y
·σ2
x the variance of x
·σ2
y the variance of y
·σxy the covariance of x and y
·c1 = (k1L)

2
, c2 = (k2L)

2 two variables to stabilize the
division with weak denominator;
·L the dynamic range of the pixel-values (typically this is
2fitits per pixel − 1);
·k1 = 0.01 and k2 = 0.03 by default.
SSIM score range from 0 to 1, where 1 means a very high
similarity. This metric can also be used as a loss function
to train GAN models. One downside of the SSIM score is
that it tends to favor model that are very close to the training
data, and doesn’t penalize well overfitting.

3.4. Result

Since the training of a CycleGAN can be quite time-
consuming, we first decided to use a subset of 100 images
of CT and T2 images. This strategy allowed us to have
result much quicker and to adapt our model more easily.
Once we were satisfied with our result and with the
hyperparameters we had chosen, we retrained the model on
the whole dataset.

The following metrics were computed on the test dataset,
containing 85 T2 MRI images and 111 CT scan.

CT→ T2 T2→ CT
FID 121.82 114.95

SSIM 0.803 0.864
Table 1. Result for our model trained on 100 images

CT→ T2 T2→ CT
FID 106.17 95.73

SSIM 0.800 0.870
Table 2. Result for our model trained on the whole dataset on 120
epochs

CT→ T2 T2→ CT
FID 80.82 71.50

SSIM 0.800 0.879
Table 3. Result for our model trained on the whole dataset on 200
epochs

3.5. Visual results

Even though metrics give a quantitative result of the per-
formance of our CycleGAN, the best feedback that we had
was visually. This allowed us to see if the system showed
mode collapse, if the transformations were realistic and if

the reconstructed image was close to the original one. For
this reason, we plotted the original image, the transformed
and the cycle reconstructed images for both CT and MRI
images on the validation set every 5 training epochs. This
was a good way to supervise the training.

Conclusion
Training a CycleGAN is known to be a difficult task by

definition in machine learning as we need to address two
opposite goals: a generator that must be good at forging
fake data and a discriminator who must be good at identi-
fying these forged data. Finally, we must find an unstable
equilibrium between these two objectives.

Applying image processing, especially registration, al-
lowed to ease/simplify the task and tweaking the loss func-
tions, especially by adding the VGG loss was a game
changer as it allows to progress beyond the ’mode co-
lapse’. At the end, the model provides really good results
as demonstrated by several metrics and visual checks.

Training a CycleGan is also a long process requiring a lot
of computation power. In medical fields, the data is voxels,
which makes the task even harder. Limiting the training
on identified slices and performing model and parameters
selection on a restricted amount of data (100 images per
modality) allow to find a good configuration that worked
even better on the full dataset. This was one of the criteria
of success as the computation on the full dataset for 200
epochs took 10 hours on Google Colab.

On the other hand, as we are not working on paired im-
ages per modality, we don’t have any solid measure to con-
firm that the generated images would be as a real one. Say-
ing that, it would be great to acquire a paired dataset to val-
idate the consistency of our generators against real images.

References
[1] Antspy : https://github.com/antsx/antspy.
[2] Cq500 dataset : http://headctstudy.qure.ai/dataset.
[3] Ixi dataset : https://brain-development.org/ixi-dataset/.
[4] Segmentation model : https://github.com/qubvel/segmentation models.pytorch.
[5] K. Armanious. Unsupervised medical image translation using

cycle-medgan. Mar. 2019.
[6] J.-Y. Z. et al. Unpaired image-to-image translation using

cycle-consistent adversarial networks. Nov 2018.
[7] I. J. Goodfellow and Y. B. et al. Generative adversarial net-

works. June 2014.

5

(a) results after 10 epochs

(b) results after 25 epochs

(c) results after 50 epochs

(d) results after 80 epochs
Figure 5. Results on the validation set after 10, 25, 50 and 80
epochs of training. Left column : original image, center column :
transformed image, right column : cycle reconstructed image. Top
row : MRI original image, bottom row : CT original image.

6

